
Automated Performance Prediction of

Message-Passing Parallel Programs

Robert J. Block*, Sekhar Sarukkai**, Pankaj blehra**

Department of Computer Science

University of Illinois

Urbana, IL 61801
rblocklCncsa.uiuc.ed u

*_ Recom Technologies
NASA Ames Research Center

Moffett Field, CA 9403.5-1000

{sekh ar,rneh ra}_iCptolemy.arc.nasa.gov

Keywords: performance analysis, performance prediction, scalability

analysis, parallel program performance, automated modeling, perfor-

mance tools, performance debugging

Abstract

The increasing use of massively parallel supercomputers to soh,'e large-

scale scientific problems has generated a need for tools that can predict

scalability trends of applications written for these machines. Much work

has been done to create simple models that represent important char-

acteristics of parallel programs, such as latency, network contention,

and communication volume. But. many of these methods still require

substantial manual effort to represent an application in the model's

format. The Mt(toolkit described in this paper is the result of an

on-going effort to automate the formation of analytic expressions of

program execution time, with a minimum of programmer assistance.

In this paper we demonstrate the feasibility of our approach, by extend-

ing previous work to detect, and model communication patterns auto-

matically, with and without overlapped computations. The predictions

derived from these models agree, within reasonable limits, with execu-

tion times of programs measured on the Intel iPSC/860 and Paragon.

Further, we demonstrate the use of MK in selecting optimal computa-

tional grain size and studying various scalability metrics.

1 Introduction

With the common use of powerful microprocessors as building blocks

for high performance computing and with the imminent use of high-

speed interconnection networks (local or wide) to communicate among

these processors, network characteristics and processor configurations

significantly effect delivered program performance. During program de-

velopment, it is impractical to reserve hundreds of processors for each

round of debugging and performance tuning or to utilize the networking

resources that may be at ones disposal during large-scale executions.

Typically, only, small-scale runs (involving, say, up to 32 processors) are

feasible. Programmers need tools that will rapidly (and with sufficient

accuracy) characterize large-scale performance of production runs using

only the information available from small-scale test runs. The devel-

opment of such tools involves performance prediction and scalability

analysis, which seek to characterize, respectively, a program's comple-

tion time and its asymptotic speedup as functions of problem size (N)

and the number of processors (P).

The performance of parallel programs on parallel and distributed envi-

romnents can be characterized in terms of their computation and com-

munication complexities. The complexity of computation is determined

largely by the activities that occur within each processor whereas that of

communication, by the message-transmission time between processors.

It therefore makes sense to make a distinction between computation

phases and communication phases. Frequently,, however, computation

and communication overlap; in that case, the complexities of compu-

tation and communication cannot be considered separately. Therefore,

modeling of message-passing programs requires a representation scheme

that not only allows us to model the computation and communication

phases but also captures the relationships among them.

In comparison with dal_a-parallel paradigms, the communication pat-

terns and interprocessor data dependencies of message-passing parallel

programs are not as evident to the compiler or from examination of

source code; these factors complicate the modeling and analysis of com-

munication complexities. It is perhaps because of this difiqculty that

there are no automated tools for performance prediction and scalability

analysis of message-passing programs. There are, however, a number

of tools for profiling communication activity and visualizing it post

mortem [5, 12]. The problem is that each profile is tied to particular

(typically small) values of N and P, whereas one needs to character-

ize complexity as a function of N and P. One of the key, problems in

performance prediction and scalability analysis, then, is the inference

of scale-independent communication patterns from communication pro-

2

filesof small-scaleruns.

The initiation of the projectto generateautomatedmodelsof programs
wasmotivatedby our inability to hand-buildmodelsof realisticparal-
lel CFD applicationsin reasonabletime. Generatingmodelsof parallel
programscould be very time consumingand possibly,morecomplex
than the actual codingof the application,leadingto little or no useof
modelanalysistools. In this paperwepresentour approachin provid-
ing a first steptowardsautomaticallygeneratingperformancemodels
of message-passingparallelprogramsand its applicationin accurately
predicting executioncharacteristicsof a numberof differentapplica-
tions.

The threekey issuesin building automatedtoolsfor performancepre-
diction and scalability analysisare: (i) choiceof a schemefor repre-
sentingaprogram'scontrolstructureand communication patterns; (ii)

development of algorithms for automated model building using only the

information available either in the source code or in execution profiles

from small-scale runs; and (iii) development of algorithms for model-

based analysis of complexity. This paper describes our approach to

these issues in the context of MK (Modeling Kernel), a tool for auto-

mated modeling of message-passing programs.

Mt< uses two key data. structures for representing models: Augmented

Parse Trees (APTs) and Communication Phase Graphs (CPGs). Briefly,

an APT captures information about the syntactic control constructs of

interest for complexity analysis (subroutines, loops, branches and con>

nmnication calls) and augments this parse-tree-like structure with sym-

bolic information about loop bounds, branch frequencies and instruc-

tion counts/timings. Also briefly, a CPG represents an application's

communication pattern as a collection of phases; each phase includes

symbolic information about participating processors and about APT

constructs whose computation might overlap with the communications

in that phase.

MI< makes extensive use of two existing toolkits during model building.

It uses the Sage compiler front-end toolkit [4] to analyze the program's

control and data flows, and to insert instrumentation for collecting cer-

tain information not available at compile time. It uses the Automated

Instrumentation and Monitoring System (AIMS) tool [12] to gather

small-scale execution profiles containing a variety of information: tim-

ing information about basic blocks, sources and destinations of mes-

sages, and data generated by the aforementioned instrumentation. MK

then converts the nmneric information from many different small-scale

execution profiles, each for a different value of N and P, into symbolic

expressions in N and P. In order to accomplish this, it makes use of

statistical regression.

The final componentof MK is an analysislayer that employswell-
known techniquesfor analysisof iteration spacesfor determination
of computationcomplexity. The analysisof communicationbegins
by characterizingindividual phasesaseither pipelinedor looselysyn-
chronous;theappropriatecomplexityexpressionis thengenerated.The
analysisproceedsbottom up in the APT; whena nodecontainsmore
than onecommunicationphase,MK determineswhetherthosephases
couldhavebeenoverlapped.Overallcomplexity is thus calculatedby
appropriatelycombiningthe complexitiesof lower-level nodes.

From a source code analysis perspective, programs with data-dependent

loop bounds and/or message sizes are hard to analyze. Consequently,

only direct solvers are completely amenable to automated analysis us-

ing MI(. Itowever, with some user intervention that specifies data-

dependencies or the number of iterations needed to converge, iterative
solvers can be tackled in almost the same manner as direct solvers.

Iligh accuracy of prediction is neither achievable nor sought by MK,

because accurate prediction requires detailed modeling of memory a.c-

cesses and cache behavior, both of which are difficult to characterize in

a scale-independent fashion and are time-consuming to sinmlate.

Its model-building stage distinguishes MK from other research in per-

formance prediction [1, 3, 2]. While MK automatically extracts com-

munication characteristics fl'om a message-passing parallel program, the

performance-prediction systems described in [1, 3] either require man-

ual specification of a communication model or assume that the program

is described in a data-pa.rallel language. Crovella [2] on the other hand,

describes an approach for shared-memory systems and starts from de-

fault models of performance predicates. Another unique contribution

of our work is a systematic, language- and scale-independent represen-

tation of parallel-program models - namely, APTs and CPGs - which

can support a variety of analysis functions.

MK is an ongoing project that currently handles only data-independent,

deterministic computations executed in a homogeneous, distributed en-

vironment. A natural extension of the toolkit towards a more heteroge-

neous environment, considering a dynamically changing network load,

is under investigat.ion. The modules that make-up MK are flexible

enough to answer a number of "what-if?" questions with minimal user

effort. Any detail of model not yet incorporated into Mt_ can easily be

added, since MI(provides a framework (including the APT and CPG)

that can be easily augmented with any level of detail.

The rest of this paper is organized as follows. Section 2 provides an

overviewof MK's operationanddescribesthe constructionandannota-
tion of augmentedparsetrees.Sections3 and4 explainhowcommuni-
cation phase graphs are built and used in complexity analysis. Section 5

describes our applications and presents results of MK's automatic anal-

ysis in generating models of their execution times. Section 6 concludes

the paper.

2 MK: Modeling Kernel

MK combines static compiler-assisted analysis, execution profiling and

statistical regression to obtain a closed-form analytic expression for a

parallel program's execution time in terms of its problem size (N), and

the number of processors (P). The goal is to capture the salient execu-

tion characteristics of a program without modeling every detail. (The

problem size may in fact be determined by multiple input parameters,

and MK allows any number of parameters to be used, but we will refer

to a single variable N for simplicity.)

Several features of MK distinguish it from other prediction tools and

make its use largely antomatic:

Automatic derivation of model structure from program structure:

A program dependence graph (PDG) is generated using the Sage

compiler front-end toolkit [4]. MK then selects the subgraph of

the PDG induced by the inclusion of major control points in the

program - such as loops, function headers and calls to subroutines

- to form the skeleton of an augmented parse tree (APT) of the

program. The APT's nodes are augmented with performance-

related information useful for both analysis and simulation [8] of

large-scale performance.

Use of static source-level analysis to identify" program variables

affecting performance: It is di_cult to infer the statistical rela-

tionship between the execution time for a complete program and

the independent variables (N a.nd P) due t.o the presence of many

independent terms. On the other hand, characterizing the values

of individual variables, such as loop bounds and message lengths,

is usually straightforward because these variables are typically
affine functions of N and P.

Detection and evaluation of communication phases using trace

analysis and domain-based graph partitioning: Careful analysis

of communicationdomainsbasedonexecutiontracesand trace-
baseddetermination of computationsoverlappingcommunica-
tion are the keyto constructionof communicationphasegraphs
(CPGs),which identify"the different communicationphasesand
containa varietyof informationabout the participating proces-
sorsandtheir patternof communication.

Generationof complexityandscalabilityexpressions:Expression
for programcompletiontime is derivedvia a bottom-up traversal
of the APT. Theexpressioncanbeusedto computedata rapidly
for a varietyof scalabilitymetrics.

2.1 APT Generation

A comprehensive representation of the program's control and data-

dependence graphs is essential for modeling program behavior. Mt(

uses APTs, which consist of a subset of nodes derived from the parse

tree of a program. Regions of code corresponding to a node in the

parse tree can be analyzed by considering the corresponding node in

the APT.

Each node in the APT is of type {ROUTINE,IF,LOOP,CALL,COMMN}.

Once the APT skeleton has been extracted from the Sigma program

graph, its nodes are annotated with attributes related to the program's
execution time. The attributes include loop bounds, branch probabil-

ities, message sizes, and basic-block execution times. In subsequent

stages, nodes are augmented with communication-phase information

that is used to determine the program's overall complexity.

To express the sizes of loop bounds and messages in terms of the pro-

gram's input parameters, Nil(uses flow analysis to perform constant

propagation and variable substitution wherever possible, and prompts

the user to supply the symbolic expressions corresponding to the re-

maining variables. In many cases, aggressive analysis of the program's

def-use chain can drastically reduce the amount of user input required.

Evaluation of branch probabilities is done by post-mortem trace anal-

ysis. To reduce overhead, an IF-node is analyzed only if at least one
of its branch subtrees contains additional control or communication

nodes.

In a program APT T, a computation phase is a subtree of T rooted at

node u, type(u) = LooP, containing no communication nodes. By tin>

ing these loop bodies and determining their loop bounds, Mt(derives
first-order estimates of computation complexities. The static analysis

component of Mt(currently recognizes rectangular and triangular itera-

tionspacesonly; it isbeingenhancedto analyzeloopswith moregeneral
structuresand dependencies.The mostimportant factorscontributing
to a parallelprogram'sfirst-orderexecutiontime arethe complexitiesof
its computationandcommunicationphases,andthe amountof overlap
betweenthe two. The next two sectionsdiscusshow communication
phaseinformation is automatically inferredby M}(usingCPGs,and
insertedinto the APT to completethe analysis.

3 Modeling of Communication Phases

As noted in Section 1, an important step in modeling message-passing

parallel programs is the recognition of communication phases. There is

a list of important constraints under which our approach for automat-

ically recognizing communication phases should work:

• There is no prior knowledge of the communication pattern gen-

erated.

• Recognized communication phases are architecture- and source

syntax-independent.

• Communication phases can overlap with each other.

• Access to a global clock will not be assumed.

In this section we define an algorithm that meets the above constraints

and show how this information augments the APT, towards use by

model analysis. A communication phase can be defined as a set of

inter-related communication operations that act in concert to transfer

data across a set of processors. These phases can take many specific

forms in an application, but they can be roughly divided into two cat-

egories: synchronous and asynchronous. Synchronous phases typically

involve exchanges of data., such as boundary communication patterns,

but also include shift, patterns (see figure 1.) Asynchronous phases

more commonly involve a directed flow of data such as pipeline or tree

patterns.

The complexity of these phases is straightforward to model analytically,

if one knows ahead of time where to look for them in the application.

Ilowever, recognizing them automatically is complicated by the variety

of forms that even a simple pattern can take in the program graph, and

by the subtle lexical differences that may distinguish two phases with

radically different execution times. As noted earlier, the fundamental

data structure in MK that contains informatio1_ about communication

7

patterns is the communication phase graph (CPG). We describe the in-
formation contained in CPGs and how it can be inferred from execution

traces.

Since communication patterns cannot be determined by static anal-

ysis of programs, some run-time information is necessary to form a

CPG. Execution traces for CPG construction are obtained using the

Automated Instrumentation and Monitoring System (AIMS) toolkit.

A trace is a time-ordered sequence of events generated during exe-

cution as the thread of control passes through instrumented program

constructs. By default, Mt< instruments all communication points and

all APT constructs {subroutines, loops and branches). Each event e

contains information about its time of occurrence t(e), the processor

on which it occurred pl(e), and an identifier c(e) for the instrumented
APT construct whose execution caused that event. If e is a send or

receive event, it also contains the other processor involved p2(e), and

the specified message tag re(e).

The inputs to the CPG construction algorithm are the APT, containing

the program's communication call points, and a trace file containing the

send and receive events from one execution. The trace file is initially

sorted by event-time. The complete algorithm is listed in figure 2; its

steps are summarized here:

. Read the trace file, find matching send and receive events, and

add communication edges between the corresponding call points
in the APT.

2. Identify communication phases as connected components (with

communication edges) of the resulting graph.

3. In a second pass through the trace, record which processors send

and receive messages in each phase, and in what order.

4. Compute the APT ancestor of each communication phase.

.5. Identify each phase as synchronous or asynchronous, and for pipeline

phases, compute the length of the longest processor chain.

The following data structures are associated with each phase g created

in step 2 above:

• SL(g): list of processors that. send messages in a phase

• RL(g): list of processors that receive messages in a phase

• palrs(g): time-ordered list of send-receive endpoints

PROCESSOR

4

I

SHIFT PIPELINE

Figure 1: Two illustrative communication patterns.

• async(g): flag indicating whether receive was posted before send

We illustrate the algorithm by comparing two different communication

patterns with similar lexical structures. Consider the two code skeletons

below: a loosely synchronous shift-right communication pattern, and a

pipeline, for the same set of 4 processors.

Shift pattern

doi=lton

if (me < 4) send(me+l)

compute

if (me > l) recv(me-1)
enddo

Pipeline pattern
doi = 1 ton

if (me > 1) recv(me-1)

compute

if One < 4) send(me+l)
enddo

Figure 1 illustrates the communication patterns. In both cases, pro-

cessor 1 sends data to processor 2, 2 to 3, and 3 to 4. The send list in

each case is {1,2,3} and the receive list, {2,3,4}. The crucial difference

between the two patterns is captured by the ordering of comnmnica-

tion events on processors 2 and 3. In the shift pattern, each processor

can send data before it receives data from another processor. In the

pipeline, processors 2, 3 and 4 must wait for data from their predeces-

sors before passing data onto their successors. Step 3 of the algorithm

catches the receive-before-send sequence in the pipeline, marks it as an

asynchronous phase, and computes that its chain depth is 3. The shift

pattern is categorized as loosely synchronous, by default.

9

The next sectionshowshow the time complexityof thesecommunica-
tion phasescaneasilybecharacterizedoncewecandistinguishpipelines
from looselysynchronouspatterns.

4 Automated Scalability Analysis using APTs

and CPGs

In this section, we will show how the complexity expression for a.

message-passing program is generated fi'om its APT and CPG. We

assume that the component expressions for computation phases are

known, and demonstrate how analogous expressions can be derived for

the communication phases that were identified and classified during the
CPG construction.

The complexity T(V) of APT node V, is defined recursively in terms

of its children's complexities, and any communication phases anchored

at V. T(V) has two components:

r(v) = r_(V') + 7;(V),

where Ts is the complexity exclusive of communication phases, and Tp

is the aggregated phase time. (For nodes that are not phase ancestors,

T(V) = T,(V).) The method fox" computing T_ was discussed in [6],

and is summarized in the table below, for the various APT node types.

tvp (v) Ts(v)
ROUTINE sum of children's complexities

IF sum of children's complexities, weighted by

their branch probabilities

LOOP sum of children's complexities, multiplied by

the width of the loop

CALL complexity of called routine

GLOBAL global communication cost (machine specific)

An important point to note is that the ancestor node of a communi-

cation phase may contain computation, as well as communication, in

its subtree (see figure 3,) and the algorithm must determine how much

computation can overlap in time with communication.

4.1 Communication Phases

If V is a phase ancestor, the time component Tp(V) must account for

overlap between successive phases. Two phases gi and gi+l are depen-

10

Let v be tile set of all communication points in tlle program.

Let G(V,E) be the CPG of the program.

Let Q be a queue of send/receive events.

Initialize G: V *-- v, E _ {}.

Step 1: (First pass through trace)

Initialize Q _- {}.

for each event ei

Search Q for prior matching event ej, such that

m(ed = m(ej),pl(e) = p2(ej), p2(e) = pl(ej)
if ej found, Add edge (e(e_), e(ej)) to G

else add ei to Q

Step 2:

Partition 6: into connected components gl .. •gn-

For each g, initialize SL(g), RL(g),pairs(g) *- {}.

Step 3: (Second pass through trace)

For each event ei

Find gk containing e(ei)

Set p _ pl(ei) (processor issuing event)

if c(ei) is SEND, and p ¢ SL(gk),

and p E RL(gk), set async(gk) _ true.

Add pl(ei) to SL(gk) or RL(gk), depending

on whether c(ei) is SEND or RECV.

to p irs(gk).Add

Step 4:

For k =

Find

1 to n do

APT node Anc(gk) which is nearest common ancestor of

all call points in gk

Step 5:
Fork = ltondo

if async(gk) = true, mark this phase as a pipeline and

compute D(gk) = depth of longest, chain

embedded in pairs(gk).

Figure 2: CPG Construction Algorithm

11

dent, if a processor that receives data in gi also sends data in gi+l.

Consecutive phases with i1o processor dependencies overlap, and the

aggregate completion time is the maximum of their complexities. Let.

Ph(V) = (gl,g2,...gM) denote the set. of communication phases at-

tached to node V. The following algorithm computes the overall com-

pletion time T(V). 1

Complexity(V)

{
if V is a computation phase

if V was included in a communication phase

return 0 { avoid multiple inclusions }

else

return Ts(V)

else if Ph(V) = 0

return T_(V)
else

rp +-- 0
fori= 1 to M- 1

if ((RL(gi) A SL(gi+,)) = O)

i+--i+l

else

return(rs + T,p)

The following procedures evaluate the completion times of synchronous

and pipeline communication phases:

Synchronous phases:

In a loosely synchronous phase g, each processor issues a send followed

by a receive. If there is no computation performed in between, the

phase completion time is simply

T(g) = + + ,.,

where r(m) is the transmission time of a message as a function of its size

(m), s is the minimum overhead for sending a message, r the mininmm

overhead for receiving a message, and m is expressed in terms of N and

1The complete algorithm has been summarized here, with some special c_es
removed for simplicity. For example, two communication phases whose ancestors
are adjacent siblings in an APT are independent, if their processor domains are
disjoint (this may occur in the case of muhiple independent pipelines).

12

P. Itowever, if computation does occur after return from the send but

before the following receive, then r(m_) + r time units of the message

transmission time in the sending node effectively overlap with useful

work. In addition, if each node is equipped with a message co-processor,

then potentially all time for communication can be overlapped with

useful computation. Let W be the sum of the overlapped computation

phases, W = _i wi. Then,

T(g) = maz(r(mu) ,W) + s + r.

Pipeline phases:

In asynchronous communication phases such as pipelines, each proces-

sor in the chain posts a receive before it sends, and typically executes

some work in between. In this case, the completion time is divided

into two stages: T(g) = Fill(g) + Re'main(g), where Fill is the time

to fill the pipeline, and Remain is the completion time of a processor

after it has received its first message. The fill time is determined by

the depth of the pipeline, the communication time, and the amount of

computation done at each stage:

Fill(g) = (D(g) - 1) × (r(,,,_) + s +,'+ W).

IIere, W is the sum of all computation phases between the receive and

the corresponding send. The remaining time for the pipeline to com-

plete depends on the width of the enclosing loop (B), the computation

time (W), send (s) and receive (r) overheads and other system over-

heads (o) such as interrupt handling time [10]:

When generating complexity expressions for either phase type, the al-

gorithm needs to determine which loops w_ are executed in the course

of a communication phase g. To obtain this information, MK instru-

ments each loop corresponding to a computation phase as an event,

and subsequently scans the trace output to determine which processors

record instances of that event. Recall that t(e) and p(e) are the time of

event e and the processor on which it occurs. The necessary condition

for including w in T(g) is that a processor executes w between two

consecutive communication calls in g:

(/(cl) < t(w) < t(c2))A (p(c£) = p(w) = p(c2)).

In synchronous phases, cl is SEND and c2 is RECEIVE; in pipelines,

it is the opposite.

IIaving derived the complexity expressions for an APT's communica-

tion and computation phases, in addition to its loop bounds and branch

probabilities, we can consolidate the results to compute the completion
time of the APT.

13

4.2 An Illustrative Example

To illustrate the analysis algorithm, we consider the back-substitution

stage of a two-way pipelined Gaussian-elimination algorithm (PGE2),

whose APT is shown in Figure 3. The APT nodes consist of a com-

plex control-structure that includes { IF, DO }. Without processor

information, the skeleton of the APT is not enough to determine the

communication phases.

In order to illustrate how the analysis progresses, the figure also shows

the processors that satisfy various conditionals. On analysis of a trace

file with 8 processors, communication edges between the communica-

tion calls are introduced into the APT. These edges are shown as di-

rected, dashed edges in Figure 3. By analyzing all connected conmm-

nication calls, four distinct communication phases are observed.

The four computation phases are distinguished by bold boxes, commu-

nication phases are illustrated by arrows connecting the nodes in each

set, and participating processors are shown in curly braces. The CPG

algorithm proceeds as follows:

Steps 1 and 2: Four distinct communication sets are identified; they

are labeled S1, S2, P1 and P2 in tile figure.

Step 3: The send and receive lists are computed for each phase. (The

lists turn out to be identical here; that is not always the case.)

$1 S2 P1 P2

send list 4 5 1-4 5-8

recv list 4 5 1-4 5-8

Step 4: The top-level routine node (PGE2) is found to be the ancestor

of all four sets; these sets are placed into the node's phase list.

Step 5: Set P1 is recognized as a pipeline, because processors 2 and 3

both receive before sending. Set P2 is handled similarly. Sets SI and

$2, on the other hand, are labeled synchronous, since processors 4 and

5 both send before receiving.

In the subsequent communication phase analysis, loops C3 and C4

are found to contribute work to P1 and P2 respectively,, since they are

executed by processors between receive and send operations. Phases Sl

and S2 are not annotated with any computation since no computation
is found between the send and receive nodes.

Let B be the width of the loops in the APT (which in this example are

identical), ml the size of the messages transmitted in the synchronous

phase, and m2 the size of the pipelined messages. The branch proba-

bilities Ill and B2 are extracted from the trace file and approximated

14

as 1/2, andthe other two as 0 (which are exact in the limit P --+ co),

and the pipeline depth is easily found to be P/2 by using a sequence of

small executions and performing regression on the depth of the pipeline

for different processor numbers.

The complexities of the four communication phases, as derived auto-

matically by the above method, are listed below. In tile pipeline cases,

the complexity term automatically considers the overlap between com-

munication and computation.

S1 r(ml) + s + r

r(ml) + s + rS2

P1 (P/2 - 1) x (r(m2) + T(C3)) + B x (s + r + T(C3))

P2 (P/2- 1) x (r(m2)+ T(C4)) + B x (s + r+ T(C4))

Returning to the top level node, we can now assemble the completion

time for this stage of PGE2. The serial time Ts is

Ts=0 xT(Cl)+0xT(C2)=0,

since loops C3 and C4 are part of communication phases and thus
are not included in the serial time. Phases S1 and S2 overlap be-

cause there is no conflict between their send and receive lists. The two

pipeline phases also overlap for the same reason. The additional time

Tp attributable to communication is therefore

Tp max(T(S1),T(5-)) + max(f(P1),T(P2)),

and the total completion time for this stage of PGE2 is

T(PC, E2) = +
= r(ml) + (/3 + 1) × (s 4- r)

+(2 - 1) × (r(m2) + T(C3)) +/3 x T(C3),

since T(C3)= T(C4).

It is important to note that in generating the execution time T(PGE2),

no assumptions regarding the syntactic structure of the program were

made. As illustrated, overlapping computation regions are also natu-

rally handled by our general analysis methodology. In addition, overlap-

ping communication phases are accurately determined and the analysis

methodology uses this information appropriately.

5 Experimental Results

We implemented the algorithms described above in Mt(, and tested its

analytical capability on two applications: a tri-diagonal linear system

15

IF

{4} zF {5} IF {1..3} BR1 {6..8} BR2

SND' RCV DO SND RCV, DO DO DO

SND

S1 {4,5} {4,5} S2

SND

Figure 3: APT for the backward substitution stage of PGE2, annotated

with communication phase information. Communication phases are

indicated by dashed arrows. Processor chains of phases are listed in

brackets, assuming an eight node partition.

solver using pipelined Gaussia.n elimination (PGEI, PGE2,) and a two-

dimensional atmospheric simulation (ATM2D). W'e discuss the analysis

that Mt< performed on each application and compare predicted versus

actual execution times on the target machines.

5.1 Tri-diagonal Solver Using Pipelined Gaussian Elimi-

nation

The numerical solution of many problems reduces in part or fully to

various matrix operations such as multiplication of matrices and vec-

tors, LU decomposition, matrix transposes and the determination of

eigenvalues and vectors. The matrix itself may be full, banded (with

nonzero elements clustered around the diagonal), or sparse. Loosely

synchronous programs are easier to analyze, resulting in good accuracy

of prediction[6, 9]. In this section, we will consider programs with mul-

tiple communication phases, including both pipelines and exchanges.

This kernel operation is commonly used in a number of computational

fluid dynamics computations such as a block tridiagonal solver{one of

the NAS parallel benchmarks) used to solve multiple, independent

systems of block tridiagonal equations. This code was written by S.

K. Weerat, unga at NASA Ames Research Center. In this version of

16

the code the Gaussianelimination phaseof the computation is par-
allelized. A pipelinedGaussianeliminationalgorithm is usedfor this
purpose. Pivot elementsof eachcolumnare determinedin sequence
andthesevaluesareusedfor updating succeedingcolumns.Processor
i has the columns(i-1)xn to ix'--En. Processors are arranged in a ring,

P P

so that each processor receives the updated pivot element from its left

neighbor, updates its own column, and then transmits the data to its

right neighbor. Two different versions of the pipeline program are con-

sidered. The first version (PGE1) uses a one-way pipelined Gaussian

elimination algorithm while the second version (PGE2) uses a two-way

pipeline.

As stated earlier, the primary goal of generating first-order performance

information is to project overall scalability trends rapidly without ex-

tensive simulations, and thus to shorten the performance tuning and

debugging cycle. Since analytically predicted execution times can be

generated much more quickly than those for simulations or actual runs,

the prediction model can be a valuable data generator for performance

visualization tools. The predicted data can also be used to choose

optimal values for parameters such as computation granularity, as we
demonstrate below.

5.1.1 PGE1

Mt< identifies two communication phases in PGEI: one pipeline com-

munication phase in the forward-elimination phase of computation and

another pipeline phase in the backward-substitution phase. Each pipeline

is determined to have a processor chain of depth P-1. In addition, the

analysis correctly determines that the two communication phases iden-

tified cannot proceed in parallel due to processor dependencies between

the two phases. Finally, the predicted execution times of the program

using the closed-form symbolic expression generated by MK, compare

favorably with experimental values.

5.1.2 PGE2

The steps taken by Mt< in analyzing the complexity of PGE2 were al-

ready discussed in the previous section. Mt< successfully identified the

six comnmnication phases in the program's execution: two pipelines in

the forward-elimination stage, two pipelines in the backward-substitution

stage, and two independent exchange communication phases in be-

tween. Each pair of phases overlaps due to the absence of processor

17

dependencies.

For eachversionof the program,MK used4- and 8-processortraces
to estimateloopcomputationtimes, build the CPG,and generatethe
complexity expressions. Predicted and actual times are compared in

figure 4. The mean prediction error is 17% for PGE1, and 21% for
PGE2.

5.2 Two-Dimensional Atmospheric Simulation

Our second test application, ATM2D, is a two-dimensional atmospheric

simulation written by Bob Wilhelmson and Crystal Shaw at the Na-

tional Center for Supercomputing Applications. ATM2D computes the

temperature change over the simulated region by iteratively solving the

planar diffusion and advection equations at each time step.

The execution platform for ATM2D was the 226-node Intel Paragon

located at NASA Ames Research Center, running NX on top of OSF/1.

The Paragon uses a packet-switched mesh interconnection network with

a communication coprocessor at each node; its network parameters are

120 ps latency and 30MB/s bandwidth.

The computational domain in ATM2D is partitioned by mapping the

storage matrices across a logical mesh of processing nodes, so that each

node performs its portion of the computation locally and trades bound-

ary values with tile four adjacent nodes. If the nodes are configured in

a rectangular grid of size P, x Pv, and the entire modeled domain has

dimensions N_ x Ny, then each node's domain has area. Nx/P_ x NSPy.

To simplify the analysis, we will assume square processor domains of

length ,_ = N,:/P_: = Ny/Py. To prevent communication deadlock, each

processor is labeled red or black (as on a checkerboard,) and executes

the following (simplified) code:

do i = 1 to nstcps

if (node is red) then

send_and_receive(north, buffer, 2A)

send_and_receive(south, buffer, 2_)

send_and_receive(east, buffer, 2_)

send_and_receive(west, buffer, 2_)
else

send_and_receive(south, buffer, 21)

send_and_receive(north, buffer, 2_)

send_and_recelve(west, buffer, 2t)

18

I

P=8, N=128

I
!

i

2 ; S 8 I0 12 14 16
K

i

Isoi P=16, N=256

i

2 4 _ e 10 12 T4 _
K

,_ P=32, N=512

1
I

o/ , . . _ , L
a 4 6 e _o 12 14 1_

K

_co r

I ",,_t P=64, N=512

i
i

4 6 a 10 _2 _ IE
K

Pr_,aea _

: P=8, N=128

2 _ _ 8 10 12 14
K

p_a_la _

P=16, N=256

]

t

r , ,

P=32, N=512

i
I

I ,

P=64, N=512 I
I_o [

i !

5o.

!
_o 12 _4 16

K

Figure 4: Predicted and actual execution times for PGE1 (left) and

PGE2 as a function of block size, using various N and P values.

19

send_and_receive(east, buffer, 2A)
endif

compute diffusion, advection, and temperature

change in local domain
enddo

Four synchronous communication phases take place between time steps,

with message sizes proportional to A, while the work at each time step is

O(A2). These synchronous phases were ea.sily detected and analyzed by

MK, and the complexity function it generated is a quadratic function
of A:

T(N,P) = a + bA + cA 2

An implication of this prediction is that if the problem size is scaled

proportionately to the mesh size (constant A), the completion time will

remain constant. This idealization is not realized exactly in practice,

as we discuss shortly.

As mentioned earlier, one objective of MK is to provide a flexible basic

framework (the APT/CPG structures) that can be improved as needed

by adding lower-level details specific to the machine or application. In

this case, we sought to model the scalability of synchronous communi-

cation phases more carefully, as this is the dominant factor in the overall

scalability of ATM2D. Since all the nodes operate independently, any

imbalance in their progression increases the receive-waiting time of the

nodes that complete their work sooner. As the likelihood of skew is

higher for larger partitions, one would expect the net communication

time to be similarly increased. _ib estimate the effect of increasing the

mesh size on communication time (with constant A), we removed all

computation from the program and re-timed the execution on partitions

with 4 to 80 nodes. As figure 5 shows, execution time varies roughly

as v/if, with a constant factor independent of A. Additional nonlinear

effects are visible for larger values of A and P, due to larger messages

and irregular mesh allocation, which produce some contention. This

observed feature was added to MK's analysis of synchronous phases,

with the result

T(phase) = r(m) + ax/-fi,

where a was found experimentally to be 30 #s.

Predicted and actual times for different values of N and P, are compared

in table 1. The predicted times were estimated by Mt(using only the

smallest trace (P = 4, A = 128.) The mean error over all 18 runs was

9.14%, and only 12.75% for P = 128.

2O

2.2

1.8

1.6

1.4

1.2

i _ i t t i

512

1 I I I I I

3 4 5 6 7 8

sqrt (P)

Figure 5: Communication time in ATM2D versus partition size, for

different values of A.

P

A = 128 4

8

16

32

64

128

= 256 4

8

16

32

64

128

A = 512 4

8

16

32

64

128

Table 1: Predicted vs.

Intel Paragon.

T(Actual)

.817

.839

.861

T(Predlcted) % Error

.769 5.88

.771 8.10

.776 9.87

.782 12.3.892

.937 .791 15.6

.925 .803 13.2

3.00

3.01

3.11 3.54

4.443.15

3.21 3.01 6.23

3.31 3.02 8.76

3.03 12.4

3.04 11.9

3.46

3.45

12.49 11.91 4.64

12.57 11.91 5.25

12.80 11.91 6.95

13.13 11.92

11.93

9.22

13.013.71

13.75 11.94 13.2

Actual Execution Times for ATM2D on the

21

5.3 Analysis of Prediction Error

The execution time of a parallel program depends on many contributing

factors, of which MI(models only a subset. For example, Mt< assumes

that the timing of sequential loops depends only on the iteration space

and a constant factor, while Jn reality there are nonlinear effects due to

cache utilization. In general, the predicted times approximate measured

times fairly well for midrange values of iteration counts, but tend to

underestimate when the granularity is outside a certain range. Another

source of error, as mentioned earlier, is the lack of timing information

for sequential blocks outside of pure computation phases. These timings

can, of course, be added at tile expense of generating more trace data.

Since timing information is obtained from trace files for relatively small

N, memory effects in larger problems are hard to predict.

It turns out that a large fraction of the errors in PGE1 and PGE2 is not

attributed to modeling computation phases, but rather to the nonlinear

behavior of pipelined communications. Briefly, the non-linear behavior

arises due to interrupt overheads when messages arrive at destination

processors. This effect is particularly severe for small granularities and

on the first processor in the pipeline. The nonlinear recurrence relation

describing the effect of this phenomenon is beyond the scope of this

paper. Incorporation of this more sophisticated pipeline model into

our analysis is straightforward, but has not been implemented as of

this writing.

5.4 Predicting Optimal Grain Size

In pipelined computations such as in PGE1 and PGE2, tile choice of

strategy for sending the array values through the processor chain affects

program performance. One strategy involves packing the pivot elements

from all the arrays into a single message, thereby reducing the number

of messages. The number of pivots from each array (i.e. the block size,

denoted by K in the above tables) ranges from 1 to 2,56. The number

of messages is inversely proportional to the block size; the maxinmm

block size of 256 corresponds to all pivots being sent in a single message.

Clearly the choice of K affects the amount of computation performed

between message sends. If the granularity is very fine, too many small

messages are sent, and if it is too coarse, the pipeline initiation time

may incur too much overhead. Selecting the optimal grain size that

achieves both good load balance and low communication overhead is

critical in obtaining good performance of pipeline algorithms.

One useful result of obtaining a closed form complexity expression T is

22

7.8
Optimal blocksize as function of P, with N = 1024

7.6

7.4

7,2

7

6,8

6,6

64 I

6,2 i 12; ;o lOO 12o ,,o

Figure 6: Optimal block size for PGE1 computed by solving aT5E=0.

that if grain size (K) is one of the independent parameters, the optimal

aT = 0. The complexitygrain size can be derived as ti_e solution to 5/_

expression for PGE1 was differentiated using Mathematica's symbolic

algebra functions. Figure 6 contains the solution plot for N = 1024

and P ranging from 4 to 128. The experimental data indicate that

the optimal grain size is between 4 and 8 for different problem sizes.

Comparison of results in Figure 6 show that the predictions accurately
reflect this observation.

5.5 Computing Scalability Metrics

Two commonly used metrics for evaluating parallel performance are

speedup, which measures T(1)/T(P) for a given problem size, and the

constant time curve, which indicates how problem size must be scaled

with system size to maintain constant completion time. A significant

advantage of a closed-form approximation expression is the ease and

quickness with which these metrics can be generated. Using actual

data would require a large number of executions and simulations. We

generated speedup and constant time curves using Mathematica [11]

for both routines in less than a minute, and the graphs are displayed in

Figures 7 and 8, respectively. Since the optimal block size is close to 8

for all parameter values tested, this value of K is used in the speedup

plots.

23

PGE 1

O00 Spee, [Ul 400

20

1%

PGE2

8OO

//400

Figure 7: Speedup curves for one-way (left) and two-way pipeline Gaus-

sian elimination, using nearest optimal block size K = 8.

PGEI PGE2

000

800

600

400

0 20 2'0 40 60 80 100 120

Figure 8: Constant-time curves for one-way (left) and two-way pipeline

Gaussian elimination, using nearest optimal block size K = 8.

24

The speedupcurvesillustrate the diminishingreturnsof increasingthe
systemsizefor a fixed problemsize,and wherethe saturation points
occur. The thresholdappearsto bea roughly linear function of N in
both routines, althoughas expected,the two-waypipeline algorithm
exhibitsabout 20%better speedupin the parameterrangesundercon-
sideration.

The constanttime curveprovidesvaluable information about appli-
cationswith scalableproblemdomains,becauseit answersquestions
suchas: howmuchmoreaccuracycanbeachieved,or how manymore
moleculescanbe simulated,etc., in the sameamountof time if the
numberof availableprocessorsis doubled? In the caseof pipelined
algorithms, the presenceof an O(P) term corresponding to pipeline

fill-time, indicates that N must be sufficiently large to minimize this

startup overhead; figure 8 visualizes this phenomenon.

6 Conclusions

In this paper we have illustrated our approach for automated model-

ing of parallel programs. We have presented detailed algorithms for

building two crucial data-structures (the APT and CPG) and the anal-

}'sis of these data structures in determining program execution times

as functions of N and P. The use of static compiler front-end tools

and run-time information in the form of traces is vital for the goal of

automated performance modeling.

We have considered a number of complex examples with multiple com-

munication phases and overlapping computations. The results show

that programs with overlapped computation and pipelined communi-

cation patterns can be automatically modeled and analyzed. In partic-

ular, our predictions are within approximately 10% of observed execu-

tion times for the purely synchronous application (ATM2D), and within

20% for the pipelined examples (PGE1,PGE2.) Further, the models are

accurate in predicting the optimal grain size of the pipelined programs,

and useful for obtaining scalability metrics on different network envi-
ronments.

Future research in this area will extend the static analysis to consider

more complex iteration spaces, and explore methods for characterizing

programs with data-dependent complexities. Plans are also in progress

to develop an integrated framework that can analyze ItPF as well as

explicit message-passing programs.

2,5

References

[1]

[2]

[a]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

M.J. Clement and M.J. Quinn, "Analytical Performance Predic-

tion on Multicomputers," Proc. Supercomputing 93, IEEE, pp.

886-89a, November 1993.

M. Crovetla and T. LeBlanc, "Parallel Performance Prediction

Using Lost Cycle Analysis," Proc. Supercomputing 94, IEE£,

pp. 600-609, November 1994.

T. FShringer, "Automatic Performance Prediction for Parallel

Programs on Massively Parallel Computers," Ph.D. Thesis, Inst.

for Software Technology and Parallel Systems, Univ. Vienna,

Austria, September 1993.

D. Gannon, et al. " Sigma II: A toolkit for Building Parallelizing

Compilers and Performance Analysis Systems," Proc. Program-

ming Environments for Parallel Computing Conference, April
1992.

M. IIeath, "Recent Developments and Case Studies in Perfor-

mance Visualization using ParaGraph", Performance Measure-

ments and Visualization of Parallel Systems, 199.3, pp. 175-200.

P. Mehra, M. Oower and M.A. Bass, "Automated Modeling of

Message-Passing Programs," Proc. Int'l. Workshop on Model-

ing_ Analysis and Simulation of Computer and Telecommunica-

tion Systems, pp. 187-192, January 1994.

P. Mehra, C. Schulbach, J. Yan, "A Comparison of Two Model-

Based Performance-Prediction Techniques for Message-Passing

Parallel Programs," ACM Sigmetrics Proceedings, May 1994,

pp. 181-190.

S.R. Sarukkai, P. Mehra and R. Block, "Automated Scalability

Analysis of Message-Passing Parallel Programs," to appear in

Transactions on Parallel and Distributed Systems, Fall 1995.

S.R. Sarukkai, "Scala bility Analysis Tools for SPMD Message-

Passing Parallel Programs," Proc. Int_l. Workshop on Modeling_

Analysis and Simulation of Computer and Telecommunication

Systems, pp. 180-186, January 1994.

R. Wijngaart, S. Sarukkai, P. Mehra, "Analysis and Optimization

of Software Pipeline Performance on MIMD Parallel Computers,"

submitted to the Journal of Parallel and Distributed Computing.

26

[11] S. Wolfram, "Mathematica", SecondEdition, Addison Wesley,
1991.

[12] J. Yan, "PerformanceTuning with AIMS - An Automated In-
strumentationand MonitoringSystemfor Multicomputers,"Pro-
ceedingsof the 27 th Hawaii International Conference on System

Sciences, IIawaii, January 1994.

27

